To the top of the document
Captiva
   
GMDE Start Page Load static TOC Load dynamic TOC Help?

Automatic HVAC Description and Operation

The air temperature controls are divided into 4 areas:

    • HVAC control components
    • Heating and A/C operation
    • Engine coolant
    • A/C cycle

HVAC CONTROL COMPONENTS

HVAC Control Module

The HVAC control module interfaces between the operator and the HVAC system to maintain air temperature and distribution settings. The battery positive and ignition 1 voltage circuits provide power to the control module. The control module supports the following features:

Feature

Availability

After Blow

Yes

Purge

Yes

Personalisation

Yes

Actuator Calibration

Yes

Air Temperature Actuator

The air temperature actuator is a 5-wire bi-directional electric motor that incorporate a feedback potentiometer. Low reference, 5-volt reference, position signal, and 2 control circuits enable the actuator to operate. The control circuits use either a 0 or 12-volt value to coordinate the actuator movement. When the actuator is at rest, both control circuits have a value of 0 volts. In order to move the actuator, the HVAC control module grounds one of the control circuits while providing the other with 12 volts. The HVAC control module reverses the polarity of the control circuits to move the actuator in the opposite direction. When the actuator shaft rotates, the potentiometer's adjustable contact changes the door position signal between 0-5 volts.

The HVAC control module uses a range of 0-255 counts to index the actuator position. The door position signal voltage is converted to a 0-255 count range. When the module sets a commanded, or targeted, value, one of the control circuits is grounded. As the actuator shaft rotates the changing position signal is sent to the module. Once the position signal and the commanded value are the same, the module removes power from both control circuits.

Air Temperature Sensors

The air temperature sensors are a 2-wire negative temperature co-efficient thermistor. The vehicle uses the following air temperature sensors:

    • Ambient Air Temperature Sensor
    • Inside air temperature sensor assembly
    • Sunload Sensor
    • Upper air temperature sensor
    • Lower air temperature sensor

A signal and low reference circuit enables the sensor to operate. As the air temperature surrounding the sensor increases, the sensor resistance decreases. The sensor signal voltage decreases as the resistance decreases. The sensor operates within a temperature range between -40 to +87.5°C (-40 to +190°F). The sensor signal varies between 0-5 volts.

The input of the duct air temperature sensors are different from the ambient and inside sensors. The HVAC control module converts the signal to a range between 0-255 counts. As the air temperature increases the count value will decrease.

If the HVAC control module detects a malfunctioning sensor, then the control module software will use a default air temperature value. The default value for the inside air temperature sensor will be displayed on the scan tool. The default value for the duct air temperature sensors will not be displayed on the scan tool. The scan tool parameter for the duct air temperature sensors are the actual state of the signal circuit. The default action ensures that the HVAC system can adjust the inside air temperature near the desired temperature until the condition is corrected.

The ambient air temperature sensor mounts underbonnet and can be affected by urban traffic, by tick-over, and by restarting a hot engine. Therefore, the HVAC control module filters the value of the ambient air temperature sensor for temperature display.

Sunload Sensor

The sunload sensor is a 2-wire photo diode. The vehicle uses left and right sunload sensors. The 2 sensors are integrated into the sunload sensor assembly. Low reference and signal circuits enable the sensor to operate. As the light shining upon the sensor gets brighter, the sensor resistance increases. The sensor signal decreases as the resistance increases. The sensor operates within an intensity range between completely dark and bright. The sensor signal varies between 0-5 volts. The HVAC control module converts the signal to a range between 0-255 counts.

The sunload sensor provides the HVAC control module a measurement of the amount of light shining on the vehicle. Bright, or high intensity, light causes the vehicle's inside temperature to increase. The HVAC system compensates for the increased temperature by diverting additional cool air into the vehicle.

If the HVAC control module detects a malfunctioning sensor, then the control module software will use a defaulted sunload value. This value will not be displayed on the scan tool. The default action ensures that the HVAC system can adjust the inside air temperature near the desired temperature until the condition is fixed. The scan tool parameter for the sunload sensor is the actual state of the signal circuit.

A/C Refrigerant Pressure Sensor

The A/C refrigerant pressure sensor is a 3-wire piezoelectric pressure transducer. A 5-volt reference, low reference, and signal circuits enable the sensor to operate. The A/C pressure signal can be between 0 and 5 volts. When the A/C refrigerant pressure is low, the signal value is near 0 volts. When the A/C refrigerant pressure is high, the signal value is near 5 volts.

The A/C refrigerant pressure sensor protects the A/C system from operating when an excessively high or low pressure condition exists. The engine control module (ECM) disables the compressor clutch under the following conditions:

    • The A/C high side pressure is more than 2 929 kPa (425 psi).
    • The clutch will be enabled after the high side pressure decreases to less than 1 376 kPa (200 psi).
    • A/C low side pressure is less than 269 kPa (39 psi).
    • The clutch will be enabled or will allow engagement again after the low side pressure increases to more than 296 kPa (43 psi).

Evaporator Low Ambient Protection

The refrigerant temperature at the temperature sensor on the evaporator case controls cycling of the compressor clutch to prevent freezing of the evaporator core. The compressor is disabled when the temperature goes below 3°C (37°F) and vehicle speed is greater than 8 km/h (5 mph). The compressor is enabled when the temperature exceeds 4°C (40°F). The minimum cycling time off is 4 seconds.

Heating and A/C Operation

The purpose of the heating and A/C system is to provide heated and cooled air to the interior of the vehicle. The A/C system will also remove humidity from the interior and reduce windscreen fogging. The vehicle operator can determine the passenger compartment temperature by adjusting the air temperature control. Regardless of the temperature setting, the following can affect the rate that the HVAC system can achieve the desired temperature:

    • Recirculation
    • Difference between inside and desired temperature
    • Difference between ambient and desired temperature
    • Blower motor speed setting
    • Mode setting

The vehicle operator can activate the A/C system by pressing the A/C switch. The A/C system can operate regardless of the temperature setting.

The engine control module (ECM) will operate the A/C system automatically in FRONT DEFROST mode to help reduce moisture inside the vehicle. The A/C LED will not illuminate unless the driver presses the A/C request switch on the HVAC control module. The A/C system may be running without the A/C LED indicator illuminated when in FRONT DEFROST mode. The HVAC system uses a compressor that incorporates a thermal switch that opens once the compressor temperature exceeds 211-217°C (380-454°F) creating an open circuit. The following conditions must be met in order for the ECM to turn on the compressor clutch:

    • BCM
       - Battery voltage between 11 and 16 volts
       - A/C request from the HVAC control module
    • ECM
       - Engine coolant temperature (ECT) is less than 117°C (243°F).
       - Engine speed is less than 4,760 RPM.
       - A/C pressure is between 2,929-2,706 kPa (425-39 psi).

Once engaged, the compressor clutch will be disengaged for the following conditions:

    • Throttle position is 100 percent
    • A/C pressure is more than 2,929 kPa (425 psi).
    • A/C pressure is less than 269 kPa (39 psi).
    • ECT is more than 120°C (248°F).
    • Engine speed is more than 6240 RPM.
    • Transmission gearchange
    • ECM detects excessive torque load.
    • ECM detects insufficient tick-over quality.
    • ECM detects a hard launch condition.

When the compressor clutch disengages, the compressor clutch diode protects the electrical system from a voltage spike.

   


© Copyright Chevrolet. All rights reserved